Matthias Gröger - Publications
2024
Dutheil, C., Lal, S., Lengaigne, M., Cravatte, S., Menkes, C.,
Receveur, A., Börgel. F., Gröger, M., Houlbreque, F. ,Le Gendre, R., Mangolte, I., Peltier, A., Meier, H.E.M. 2024:
The massive 2016 marine heatwave in the Southwest Pacific: An “El Niño–Madden-Julian Oscillation” compound event.Science Advances,10,eadp294. https://www.science.org/doi/10.1126/sciadv.adp2948Gröger, M., Börgel, F., Karsten, S., Meier, H.E.M., Safonova, K., Dutheil, C., Receveur, A., Polte, P. 2024: Future climate change and marine heatwaves - Projected impact on key habitats for herring reproduction, Sci. Total Environ. (2024), https://doi.org/10.1016/j.scitotenv.2024.175756
Hieronymus, J., Hieronymus, M., Gröger, M., Schwinger, J., Bernadello, R., Tourigny, E., Sicardi, V., Ruvalcaba Baroni, I., and Wyser, K.: Net primary production annual maxima in the North Atlantic projected to shift in the 21st century, Biogeosciences, 21, 2189–2206, https://doi.org/10.5194/bg-21-2189-2024, 2024
Ruvalcaba Baroni, I., Almroth-Rosell, E., Axell, L., Fredriksson, S. T., Hieronymus, J., Hieronymus, M., Brunnabend, S.-E., Gröger, M., Kuznetsov, I., Fransner, F., Hordoir, R., Falahat, S., and Arneborg, L.: Validation of the coupled physical–biogeochemical ocean model NEMO–SCOBI for the North Sea–Baltic Sea system, Biogeosciences, 21, 2087–2132, https://doi.org/10.5194/bg-21-2087-2024, 2024
Wåhlström,I., Almroth-Rosell, E., Edman,M., Olofsson, M., Eilola, K., Fleming, V., Gröger, M., Arneborg, L.,Meier, HEM, 2024: Increased nutrient retention and cyanobacterial blooms in a future coastal zone, Estuarine, Coastal and Shelf Science, 2024,108728, https://doi.org/10.1016/j.ecss.2024.108728.
Safonova, K., Meier, H.E.M. & Gröger, M. Summer heatwaves on the Baltic Sea seabed contribute to oxygen deficiency in shallow areas. Commun Earth Environ 5, 106 (2024). https://doi.org/10.1038/s43247-024-01268-z
Karsten, S., Radtke, H., Gröger, M., Ho-Hagemann, H. T. M., Mashayekh, H., Neumann, T., and Meier, H. E. M.: Flux coupling approach on an exchange grid for the IOW Earth System Model (version 1.04.00) of the Baltic Sea region, Geosci. Model Dev., 17, 1689–1708, https://doi.org/10.5194/gmd-17-1689-2024, 2024.
Gröger, M., Dutheil, C., Börgel, F., Meier, HEM (2024): Drivers of marine heatwaves in a stratified marginal sea, Climate Dynamics,7062, DOI:10.1007/s00382-023-07062-5
2023
Takano, Y, Ilyina,T., Tjiputra, J., Eddebbar, Y.A., Berthet, S., Bopp, L., Buitenhuis, E., Butenschön, M., Christian, J., Dunne, J.P., Gröger, M., Hayashida, H. Hieronymus, J., Koenigk, T., Krasting, J., Long, M. Lovato, T., Nakano,H., Palmieri, J., Schwinger, J., Séférian, R., Suntharalingam, P., Tatebe, H., Tsujino, H., Urakawa, S., Watanabe, M., Yool, A. (2023): Simulations of Ocean Deoxygenation in the Historical Era: Insights from Forced and Coupled Models, Frontiers in Marine Science - Global Change and the Future Ocean, doi: https://doi.org/10.3389/fmars.2023.1139917.
Börgel, F., Gröger, M., Meier, H.E.M,. Dutheil, C., Radtke, H., and Borchert, L., The impact of Atlantic Multidecadal Variability on Baltic Sea temperatures limited to winter. npj Clim Atmos Sci 6, 64 (2023). https://doi.org/10.1038/s41612-023-00373-8
Meier, H.E.M, Barghorn, L., Börgel, F., Gröger, M., Naumov, L., Radtke, R. (2023) Multidecadal climate variability dominated past trends in the water balance of the Baltic Sea watershed. npj Clim Atmos Sci 6, 58 (2023). https://doi.org/10.1038/s41612-023-00380-9.
Dutheil, C., Meier, H.E.M., Gröger, M., Börgel, F., (2023): Warming of Baltic Sea water masses since 1850. Clim Dyn. https://doi.org/10.1007/s00382-022-06628-z
2022
Gröger, M., Placke, M., Meier, H. E. M., Börgel, F., Brunnabend, S.-E., Dutheil, C., Gräwe, U., Hieronymus, M., Neumann, T., Radtke, H., Schimanke, S., Su, J., and Väli, G.: The Baltic Sea Model Intercomparison Project (BMIP) – a platform for model development, evaluation, and uncertainty assessment, Geosci. Model Dev., 15, 8613–8638, https://doi.org/10.5194/gmd-15-8613-2022, 2022.
2022). Projected climate change impact on a coastal sea—As significant as all current pressures combined. Global Change Biology, 00, 1– 10. https://doi.org/10.1111/gcb.16312 , , , , , , , , , , , , , , & (
Gröger, M., Dieterich, C., Dutheil, C., Meier, H. E. M., and Sein, D. V. (2022): Atmospheric rivers in CMIP5 climate ensembles downscaled with a high-resolution regional climate model, Earth Syst. Dynam., 13, 613–631, https://doi.org/10.5194/esd-13-613-2022.
Börgel, F., Meier, H.E.M., Gröger, M., Rhein, M., Dutheil, C., Kaiser, J.M, (2022).: Atlantic multidecadal variability and the implications for North European precipitation, Environ. Res. Lett., 17, 044040, https://iopscience.iop.org/article/10.1088/1748-9326/ac5c
Meier, H. E. M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O. B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J. J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O. P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., and Zhang, W. (2022): Climate Change in the Baltic Sea Region: A Summary, Earth Syst. Dynam., 13, 457–593, https://doi.org/10.5194/esd-13-457-2022.
Sein, D. V., Dvornikov, A. Y., Martyanov, S. D., Cabos, W., Ryabchenko, V. A., Gröger, M., Jacob, D., Kumar Mishra, A., and Kumar, P.: Indian Ocean marine biogeochemical variability and its feedback on simulated South Asia climate, Earth Syst. Dynam., 13, 809–831, https://doi.org/10.5194/esd-13-809-2022, 2022
Christensen, O. B., Kjellström, E., Dieterich, C., Gröger, M., and Meier, H. E. M.: Atmospheric regional climate projections for the Baltic Sea region until 2100, Earth Syst. Dynam., 13, 133–157, https://doi.org/10.5194/esd-13-133-2022, 2022
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O. B., and Kjellström, E.: Oceanographic regional climate projections for the Baltic Sea until 2100, Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, 2022.
2021
Dutheil, C., Meier, H.E.M., Gröger, M., and Börgel, F. (2021). Understanding past and future sea surface temperature trends in the Baltic Sea. Climate Dynamics . https://doi.org/10.1007/s00382-021-06084-1
Climate Change in the Baltic Sea. 2021 Fact Sheet. Baltic Sea Environment Proceedings n°180. HELCOM/Baltic Earth 2021. Available: https://helcom.fi/media/publications/Baltic-Sea-Climate-Change-Fact-Sheet-2021.pdf.
Gröger, M., Dieterich, C., Haapala, J., Ho-Hagemann, H. T. M., Hagemann, S., Jakacki, J., May, W., Meier, H. E. M., Miller, P. A., Rutgersson, A., and Wu, L. (2021): Coupled regional Earth system modelling in the Baltic Sea region, Earth Syst. Dynam., https://doi.org/10.5194/esd-12-939-2021.
Döscher, R., Acosta, M., Alessandri, A., Anthoni, P., Arsouze, T., Bergman, T., Bernardello, R., Boussetta, S., Caron, L.-P., Carver, G., Castrillo, M., Catalano, F., Cvijanovic, I., Davini, P., Dekker, E., Doblas-Reyes, F. J., Docquier, D., Echevarria, P., Fladrich, U., Fuentes-Franco, R., Gröger, M., v. Hardenberg, J., Hieronymus, J., Karami, M. P., Keskinen, J.-P., Koenigk, T., Makkonen, R., Massonnet, F., Ménégoz, M., Miller, P. A., Moreno-Chamarro, E., Nieradzik, L., van Noije, T., Nolan, P., O'Donnell, D., Ollinaho, P., van den Oord, G., Ortega, P., Prims, O. T., Ramos, A., Reerink, T., Rousset, C., Ruprich-Robert, Y., Le Sager, P., Schmith, T., Schrödner, R., Serva, F., Sicardi, V., Sloth Madsen, M., Smith, B., Tian, T., Tourigny, E., Uotila, P., Vancoppenolle, M., Wang, S., Wårlind, D., Willén, U., Wyser, K., Yang, S., Yepes-Arbós, X., and Zhang, Q.: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6, Geosci. Model Dev., 15, 2973–3020, https://doi.org/10.5194/gmd-15-2973-2022, 2022.
Sein D.V., Dvornikov A.Yu., Martyanov S.D., Cabos W., Ryabchenko V.A., Gröger M., Mishra A.K., Kumar P., Gorchakov V. A:Influence of the Water Temperature–Phytoplankton Feedback on the Upper Layer Temperature of the Indian Ocean. Fundamentalnaya i Prikladnaya Gidrofizika. 2021, 14, 4, 64–76. doi: 10.7868/S2073667321040067
Gröger, M., Dieterich, C., Meier, H.E.M. (2021): Is interactive air sea coupling relevant for simulating the future climate of Europe?, Climate Dynamics, DOI:10.1007/s00382-020-05489-8
Meier, H.E.M., Dieterich, Gröger, M. (2021): Natural variability is a large source of uncertainty in future projections of hypoxia in the Baltic Sea. Commun Earth Environ 2, 50 (2021). https://www.nature.com/articles/s43247-021-00115-9
2020
Myriokefalitakis, S., Gröger, M., Hieronymus, J., and Döscher, R. (2020): An explicit estimate of the atmospheric nutrient impact on global oceanic productivity, Ocean Sci., https://doi.org/10.5194/os-16-1183-2020
Sein, D.V, Gröger, M., Cabos, W., Alvarez, F., Hagemann, S., de la Vara, A., Pinto, J.G., Izquierdo, A., Koldunov, N.V., Dvornikov, A. Y., Limareva, N., Martinez, B., Jacob, D. (2020), Regionally coupled atmosphere - ocean - marine biogeochemistry model ROM: 2. Studying the climate change signal in the North Atlantic and Europe J. Adv. Model. Earth Syst., DOI: 10.1029/2019MS001646
2019
Skyllas, N., Bintanja, R., Buma, A., Brussaard, C., Gröger, M., Hieronymus, J., van de Poll, W., Validation of stratification driven phytoplankton biomass and nutrient concentrations in the Northeast Atlantic Ocean as simulated by EC-Earth, Geosciences, doi: 10.3390/geosciences9100450.
Dieterich, C., Gröger, M., Arneborg, L., and Andersson, H. C. (2019]: Extreme Sea Levels in the Baltic Sea under Climate Change Scenarios. Part 1: Model Validation and Sensitivity, Ocean Sci., https://os.copernicus.org/articles/15/1399/2019/.
Meier, M., Dieterich, C., Eilola, K., Gröger, M., Höglund, A., Radtke, H., Saraiva, S., and Wåhlström, I. (2019) Future projections of record-breaking sea surface temperature and cyanobacteria bloom events in the Baltic Sea, AMBIO, 10.1007/s13280-019-01235-5.
Gröger, M., Arneborg, L., Dieterich, C., Höglund, A., and Meier, H.E.M. (2019), Summer Hydrographic changes in the Baltic Sea, Kattegat and Skagerrak projected in an ensemble of climate scenarios downscaled with a coupled regional ocean-sea ice-atmosphere model, Climate Dynamics, 10.1007/s00382-019-04908-9.
Dieterich, C., Wang, S., Schimanke, S., Gröger, M., Klein, B., Hordoir, R., Samuelsson, P., Liu, Y., Axell, L., Höglund, A., and Meier, H.E.M., (2019), Surface Heat Budget over the North Sea in Climate Change Simulations, Atmosphere, https://doi.org/10.3390/atmos10050272.
Meier , H.E.M., Edman, M., Eilola, K., Placke, M., Neumann, T., Andersson, H., Brunnabend, S., Dieterich, C., Frauen, C., Friedland, R., Gröger, M.,Gustafsson, B., Gustafsson, E., Isaev, A., Kniebusch, M., Kuznetsov, I., Müller-Karulis, B., Naumann, M., Omstedt, A., Ryabchenko, V., Saraiva, S., and Savchuk, O. (2019), Assessment of uncertainties in scenario simulations of biogeochemical cycles in the Baltic Sea Front. Mar. Sci., 6:46 DOI:10.3389/fmars.2019.00046.
Saraiva, S., Meier,H.E.M., Andersson, H., Höglund, A., Dieterich, C., Gröger, M., Hordoir, R., Eilola, K. (2019), Uncertainties in projections of the Baltic Sea ecosystem driven by an ensemble of global climate models, Front. Earth Sci. - Interdisciplinary Climate Studies,doi: 10.3389/feart.2018.00244
Hordoir, R., Axell, L., Höglund, A., Dieterich, C., Fransner, F., Gröger, M., Liu, Y., Pemberton, P., Schimanke, S., Andersson, H., Ljungemyr, P., Nygren, P., Falahat, S., Nord, A., Jönsson, A., Lake, I., Döös,K., Hieronymus, M., Dietze, H., Löptien, U., Kuznetsov, I., Westerlund, A., Tuomi, L., and Haapala, J. (2019): Nemo-Nordic 1.0: A NEMO based ocean model for Baltic and North Seas, research and operational applications, Geosci. Model Dev., 12 (1), 363–386, DOI: 10.5194/gmd-12-363-2019
2018
Meier, H.E.M, Edman,M., Eilola, K.,Placke, M., Neumann, T., Andersson, H., Brunnabend, S.-E., Dieterich, C., Frauen,C., Friedland,R., Gröger, M, Gustafsson, B., Gustafsson, E., Isaev,A., Kniebusch,M., Kuznetsov, I., Müller-Karulis, B., Omstedt,A., Ryabchenko, V., Saraiva,S., Savchuk.O.P., (2018) Assessment of eutrophication abatement scenarios for the Baltic Sea by multi-model ensemble simulations, Front. Mar. Sci. - Coastal Ocean Processes, 5, 440, DOI:10.3389/fmars.2018.00440
Saraiva, S. Meier, H.E.M., Andersson, H., Höglund, A., Dieterich, C., Gröger, M. Hordoir, H., Eilola,K., (2018), Baltic Sea ecosystem response to various nutrient load scenarios in present and future climates, Climate Dynamics, doi:10.1007/s00382-018-4330-0.
2017
Pätsch J. , Burchard, H., Dieterich, C., Gräwe, U., Gröger, M, Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J., Ho Hageman, H.T.M., Schulz, A., Elizalde, A., and Eden, C. (2017), Global and regional model evaluation of hydrodynamic aspects in the North Sea relevant for ecosystem modeling, Ocean Modelling, 116, 70-95, doi: 10.1016/j.ocemod.2017.06.005
Ho-Hagemann, H.T.M., Geyer, B., Gröger, M., Meier, H.E.M., Rockel, B., Zahn, M., (2017), Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe, Climate Dynamics, doi: 10.1007/s00382-017-3546-8
2015
Gröger, M., Dieterich, C., Meier, Markus HEM, Schimanke, S. (2015), Thermal air-sea coupling in hindcast simulations for the North Sea and Baltic Sea on the NW European shelf, Tellus A, 67, 26911, doi:10.3402/tellusa.v67.26911.
Sein DV, Mikolajewicz U, Gröger, M, Fast I., Cabos W., Pinto J.G., Hagemann S., Semmler T., Izquierdo A, Jacob D (2015) Regionally coupled atmosphere - ocean – sea ice – marine biogeochemistry model ROM. Part I: Description and validation. J. Adv. Model. Earth Syst. doi:10.1002/2014MS000357
2014
P. Bakker, Masson-Delmotte, V., Martrat, B., Charbit, S., Renssen, H., Gröger, M., Krebs-Kanzow, U.,Lohman, G., Lunt ,D.J., Pfeiffer, M., Phipps, S.J., Prange, M., S. P. Ritz, S.P., Schulz, M., Stenni, B., Stone, E.J., and Varma, V. (2014), Temperature trends during the Present and Last interglacial periods - A multi-model-data comparison, Quaternary Science Reviews, DOI: 10.1016/j.quascirev.2014.06.031.
2013
P. Bakker, E.J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, S. Khon, D.J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, M. Schulz, (2013) Last interglacial temperature evolution – a model inter-comparison,Climate of the Past, doi: 10.5194/cp-9-605-2013
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, D. Sein, and A. Moll, (2013): NW European shelf under climate warming: Implications for open ocean – shelf exchange, primary production, and carbon absorption. Biogeosciences, 10, 3767-3792,doi:10.5194/bg-10-3767-2013.
2011
M. Gröger, and U. Mikolajewicz, (2011). Note on the CO2 air-sea gas exchange at high temperatures, Ocean Modelling, 39, 284 - 290, doi: 10.1016/j.ocemod.2011.05.003
D. Bauch, M. Gröger, I. Dmitrenko, J. Hölemann, S. Kirillov, A. Mackensen, E. Taldenkova, N. Andersen, (2011). Atmospheric controlled freshwater release at the Laptev Sea Continental margin. Polar research, 30:5858 - DOI: 10.3402/polar.v30i.5858.
2010
D. Bauch, J. Hölemann, S. Willmes, M. Gröger, A. Novikhin, A. Nikulina, H. Kassens , L. Timokhov, (2010). Changes in distribution of brine waters on the Laptev Sea shelf in 2007. Journal of Geophysical Research, 15, C11008, doi:10.1029/2010JC006249
before 2008
M. Vizcaíno, U. Mikolajewicz, M. Gröger, E. Maier-Reimer, G. Schurgers, and A. M. E. Winguth (2008). Long-term ice sheet–climate interactions under anthropogenic greenhouse forcing simulated with a complex earth system model. Climate Dynamics, doi: 10.1007/s00382-008-0369-7.
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, G. Schurgers, M. Vizcaino and A. Winguth (2007a). Vegetation - climate feedbacks in transient simulations over the last interglacial (128,000-113,000 yrBP). in F.Sirocko, T. Litt, M. Claussen and Sanchez Goni (eds.), Developments in Quaternary Science,7,DOI: 10.1016/S1571-0866(07)80062-5
Sirocko, F., Claussen, M., Litt, T., Fernanda Sánchez Goñi, M., Berger, A., Boettger, T., Diehl, M., Desprat, S., Delmonte, B., Degering, D., Frechen, M., A. Geyh, M., Gröger, M., Kageyama, M., Kaspar, F., Kühl, N., Kubatzki, C., Lohmann, G., Loutre, M. F., Müller, U., Rein, Bert, Rosendahl, W., Roucoux, K., Rousseau, D. D., Seelos, K., Siddall, M., Scholz, D., Spötl, C., Urban, B., Vautravers, M., Velichko, A., Wenzel, S., Widmann, M., Wünnemann, B. (2007) Chronology and climate forcing of the last four interglacials, Developments in Quaternary Science,7,DOI:10.1016/S1571-0866(07)80065-0
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, G. Schurgers, M. Vizcaino and A. Winguth (2007b). Changes in the hydrological cycle, ocean circulation, and carbon cycling during the last interglacial and glacial transition. Paleoceanography, 22, PA4205, doi:10.1029/2006PA001375.
U. Mikolajewicz, M. Gröger, E. Maier-Reimer, G. Schurgers, M. Vizcaino and A. Winguth (2007) Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model. Climate Dynamics, 8, .599-633, doi: 10.1007/s00382-006-0204-y.
G. Schurgers, U. Mikolajewicz, M. Gröger, E. Maier-Reimer, M. Vizcaino and A. Winguth (2007). Long-term effects of biogeophysical and biogeochemical interactions between terrestrial biosphere and climate under anthropogenic climate change. Global and Planetary Change, 64(1-2), 26-37. https://doi.org/10.1016/j.gloplacha.2008.01.009
G. Schurgers, U. Mikolajewicz, M. Gröger, E. Maier-Reimer, M. Vizcaino and A. Winguth (2007). Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials: a comparison between Eemian and Holocene and Holocene, Climate of the Past, 3, 1–14. https://doi.org/10.5194/cp-2-205-2006
A. Winguth, U. Mikolajewicz, M. Gröger, E. Maier-Reimer, G. Schurgers, and M. Vizcaíno (2005), Centennial-scale interactions between the carbon cycle and anthropogenic climate change using a dynamic earth system model. Geophysical Research Letters 32(23), doi:101029/2005GL023681.
G. Schurgers, U. Mikolajewicz, M. Gröger, E. Maier-Reimer, M. Vizcaino and A. Winguth (2007). The effect of land surface changes on Eemian climate., Climate Dynamics, 29 (4), 357-373, doi: 10.1007/s00382-007-0237-x.
M. Gröger, R. Henrich, and T. Bickert (2003). Glacial-Interglacial variability in lower North Atlantic deep water: inference from silt grain-size analysis and carbonate preservation in the western equatorial Atlantic. Marine Geololgy 201(4), 321-332. https://doi.org/10.1016/S0025-3227(03)00263-9
M. Gröger, R. Henrich, and T. Bickert, (2003): Variability of silt grain-size and planktonic foraminiferal reservation in Plio-/Pleistocene sediments from the western equatorial Atlantic and Caribbean: Marine Geology 201(4), 307-320. https://doi.org/10.1016/S0025-3227(03)00264-0
R. Henrich, K.H. Baumann, S. Gerhardt, M. Gröger, and A. Volbers (2003). Carbonate preservation in deep and intermediate water masses in the South Atlantic: evaluation and geological record (a review). In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budget and current systems. Springer Verlag, Berlin, Heidelberg. https://link.springer.com/chapter/10.1007/978-3-642-18917-3_28
M. Gröger, H. Ortner, & C. Haas, (1997). Flysch-Spurenfossilassoziationen in der Höheren Muttekopfgosau (Oberkreide) nordwestlich von Imst. - Geol. Paläont. Mitt. Innsbruck, 22, 153-158 (in german). https://www.zobodat.at/pdf/GeolPalaeMitt_022_0153-0158.pdf
M. Gröger, (1998). Bericht über geologische Aufnahmen in den Nördlichen Kalkalpen, Blatt 115 Reutte. - Jb. Geol. Bundes-A.,1998, 311-312, Wien (in german). https://www.zobodat.at/pdf/JbGeolReichsanst_140_0310.pdf